Signal transduction mechanism of interleukin 6 in cultured rat mesangial cells

Megumu Fukunaga¹, Yoshihiro Fujiwara¹, Mari Fujibayashi², Satoshi Ochi¹, Kenji Yokoyama¹, Akio Ando², Toshio Hirano², Naohiko Ueda¹ and Takenobu Kamada¹

¹ First Department of Medicine, Osaka University Medical School, Osaka, Japan, ² Medical Science of Health, Second Division, Osaka University, Osaka, Japan and ³ Division of Oncology, Biomedical Research Center, Osaka University Medical School, Osaka, Japan

Received 3 April 1991

Interleukin 6 (IL-6) is one of the potent autocrine growth factors for mesangial cells. We investigated the signal transduction mechanism of IL-6 in cultured rat mesangial cells. IL-6 induced a transient increase of inositol 1,4,5-trisphosphate (Ins 1,4,5-P₃) followed by a transient and sustained increase of intracellular calcium concentration, suggesting that IL-6 stimulates phosphoinositide turnover. IL-6 also stimulated prostaglandin E₂ (PGE₂) production. The IL-6-concentration dependency in PGE₂ production was similar to that in Ins 1,4,5-P₃ production. We concluded that the action of IL-6 on mesangial cells is exerted at least partially through the enhancement of phosphoinositide turnover and PGE₂ production.

Interleukin 6; Mesangial cell; Signal transduction mechanism; Phosphoinositide turnover; Intracellular calcium; Prostaglandin E2

1. INTRODUCTION

Interleukin 6 (IL-6) was originally characterized as a B cell stimulatory factor-2 [1]. Afterwards it has been clarified that IL-6 has a variety of biological activities including the induction of differentiation or proliferation and the inhibition of proliferation in many types of cells (see reviews [2,3]). Recently, Horii et al. [4] reported that IL-6 stimulated DNA synthesis in cultured rat mesangial cells, and that urinary excretion of IL-6 was increased in patients with mesangial proliferative glomerulonephritis. Furthermore, Ruef et al. [5] reported that IL-6 acted as an autocrine growth factor in cultured rat mesangial cells. Thus IL-6 is now thought as one of the key substances to regulate mesangial cell proliferation. However, the signal transduction mechanism of IL-6 has not yet been elucidated.

Many mesangial growth factors transmit their signals through enhancement of phosphoinositide (PI) turnover. They also stimulate the production of prostaglandin E_2 (PGE₂) which may act as a negative modulator of the actions of these growth factors (see review [6]). So, we investigated the possible involvement of PI turnover and PGE₂ production in signalling mechanisms of IL-6 in cultured rat mesangial cells. In this paper, we measured inositol 1,4,5-trisphosphate (Ins 1,4,5-P₃), one of the hydrolyzed products of phosphatidylinositol

Correspondence address: Y. Fujiwara, First Department of Medicine, Osaka University Medical School, 1-1-50 Fukushima. Fukushima-ku, Osaka 553, Japan. Fax: (81) (6) 451 8660.

4,5-bisphosphate (PIP₂) to investigate the involvement of PI turnover through activation of phospholipase C (PLC) [7].

2. MATERIALS AND METHODS

2.1. Materials

Human recombinant IL-6 (hrIL-6) is prepared as previously described [8]. Fetal calf serum (FCS) was purchased from Cell Culture Laboratories (Cleveland, OH). Fura-2 acetoxymethyl ester (Fura-2 AM) was purchased from Dojin Chemical (Kumamoto, Japan). Other chemicals were of highest purity available.

2.2. Preparation of cultured rat mesangial cells

Cultured rat mesangial cells were obtained from isolated glomeruli prepared from male Sprague-Dawley rats as described in [9]. Cells were maintained in RPMI 1640 supplemented by 20% FCS, and only first-subcultured mesangial cells were used in this study.

2.3. Measurement of Ins 1,4,5-P3

Intracellular levels of Ins 1,4,5-P₃ were determined as described in [9]. In brief, subconfluent mesangial cells seeded on 12-well culture plates were preincubated in RPMI 1640 without FCS for one hour and in HEPES-buffered Hank's balanced salt solution, pH 7.4, for 20 min. HrIL-6 or vehicle was added to the cells and, at the indicated time, the reaction was terminated by addition of ice-cold 15% trichloroacetic acid (TCA). TCA was eliminated by washing with 4 vols. of water-satured diethylether 4 times and the samples were assayed for Ins 1,4,5-P₃ using Amersham's specific binding assay kit, TRK.1000.

2.4. Measurement of intracellular calcium ion concentration

As described in [9], intracellular calcium ion concentration (iCa²⁺) was measured using fura-2-loaded mesangial cells. The cells seeded on 10×40 mm glass cover slides were incubated with Fura-2 AM (4 μ M) for 60 min, and then with HEPES-buffered Krebs-Henseleit solution, pH 7.2, for an additional 20 min, for cleavage. One cover slide

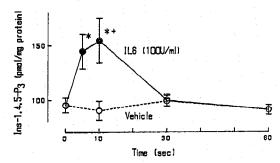


Fig. 1. Time course of Ins 1,4,5-P₃ production by 100 U/ml IL-6 in cultured rat mesangial cells. Data are shown as mean \pm SE of 3 to 4 determinations. Statistical analysis was done by unpaired Student's *t*-test for non-multiple comparison and by Dunnett's multiple comparison procedure for multiple comparisons. *P < 0.05 vs time 0, $^+P < 0.05$ vs vehicle.

was placed in a quartz cuvette with HEPES-buffered Krebs-Henseleit solution and the Ca²⁺-fura-2 fluorescence was measured by fluorescence spectrophotometer (Hitachi F4000) with wavelengths of 340 and 380 nm for excitations and of 505 nm for emission. iCa²⁺ was calculated using Grykiewicz's formula [10].

2.5. Measurement of PGE2

Mesangial cells seeded on 12-well culture plates as in section 2.3 were used. The cells were preincubated in RPMI 1640 without FCS for 3 days and hrIL-6 or vehicle was added. After 30 min of reaction time, the medium was assayed for PGE₂ using NEN's RIA kit, NEK.020.

3. RESULTS

In cultured rat mesangial cells, 100 U/ml IL-6 rapidly increased Ins 1,4,5-P₃. The intracellular Ins 1,4,5-P₃ level reached its peak at 10 s (0 s: 95.1 \pm 7.4, 10 s: 154.6 \pm 20.8 pmol/mg protein, P< 0.05). After 10 s, Ins 1,4,5-P₃ gradually decreased and returned to its basal value by 30 s (30 s: 99.8 \pm 11.5) (Fig. 1). The IL-6-induced increase in Ins 1,4,5-P₃ at 10 s was dose-

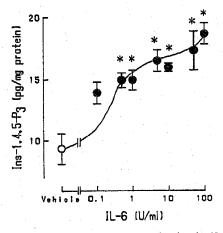


Fig. 2. Dose-dependency of $\ln s 1,4,5-P_3$ production by 1L-6 at 10 s in cultured rat mesangial cells. Data are shown as mean \pm SE of 3 to 4 determinations. Statistical analysis was done by Dunnett's multiple comparison procedure. *P < 0.05 vs vehicle.

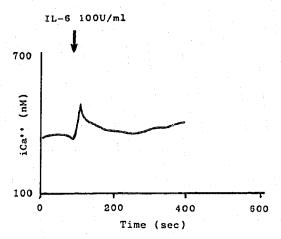


Fig. 3. Change in iCa²⁺ by 100 U/ml IL-6 in fura-2-loaded cultured rat mesangial cells. This figure shows a typical trace from representative experiments.

dependent and a significant increase was observed in the concentrations at and above 0.5 U/ml with a half maximal effect at 1 U/ml (Fig. 2). 100 U/ml IL-6 also increased iCa²⁺ in a pattern with an initial transient peak at 15 s followed by a rapid decrease and again a sustained increase above its basal value, which is so-called 'transient and sustained pattern' (Fig. 3). PGE₂ production was stimulated by IL-6 dose-dependently. A significant increase was observed in concentrations at and above 0.1 U/ml with a half maximal effect at about 5 U/ml (Fig. 4).

4. DISCUSSION

Ins 1,4,5-P₃ hydrolyzed from PIP₂ stimulates intracellular calcium mobilization which induces several biological actions [7]. In this study, 100 U/ml IL-6, which had been reported to stimulate the proliferation of rat mesangial cells [2-4], could induce a rapid increase in Ins 1,4,5-P₃ followed by the increment of iCa²⁺ in so-called 'transient and sustained' pattern. These results indicate that IL-6 enhances PI turnover in cultured rat mesangial cells.

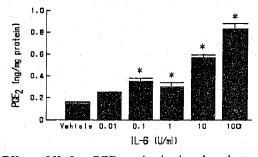


Fig. 4. Effects of IL-6 on PGE₂ production in cultured rat mesangial cells. Data are shown as mean \pm SE of 3 to 4 determinations. Statistical analysis was done by Dunnett's multiple comparison procedure. *P < 0.05 vs vehicle.

IL-6 also stimulated PGE₂ production. The stimulation of PGE₂ production is a common characteristic of many other growth factors that enhance PI turnover in mesangial cells. Both the dose-response relationship and the concentration to induce a half maximal effect of the stimulation of PGE2 production by IL-6 were similar to those of the increase in Ins 1,4,5-P₃ by IL-6. These results suggest that PGE₂ production is stimulated by some mechanism coupled to the PI signaling pathway, for example, (1) the activation of phospholipase A₂ (PLA₂), a Ca²⁺-dependent enzyme, by an Ins 1,4,5-P₃-induced increase in iCa²⁺, with a resultant release of arachidonic acid from membrane phospholipids, or (2) sequential activations of PLC and diacylglycerol (DAG) lipase with a resultant release of arachidonic acid from DAG. Alternatively, PLA2 may be activated by the independent mechanism on PI turnover [6]. It remains to be elucidated which mechanism(s) may be mainly involved in PGE2 generation by IL-6.

Recent works on the molecular cloning of IL-6 receptor and signal transducer, gpl30, have revealed that both molecules belong to the cytokine receptor superfamily and have no tyrosine kinase domain in their own intracellular regions [11,12]. The existence of such receptor protein and signal transducer protein in mesangial cells, and any other possible signaling pathways of IL-6 independent of PI turnover should be next studied.

In conclusion, IL-6 may exhibit some biological actions on cultured rat mesangial cells at least partially through the enhancement of PI turnover and the simultaneous stimulation of PGE₂ production.

Acknowledgements: We gratefully acknowledge Mrs. Miki Okishio and Mr. Koichi Kondo, Chemistry Laboratories, Central Research Division, Takeda Chemical Industries Ltd, Osaka, Japan, for their assistance regarding the measurement of iCa²⁺ in fura-2-loaded mesangial cells.

REFERENCES

- [1] Hirano, T., Yasukawa, K., Harada, H., Taga, T., Watanabe, Y., Matsuda, T., Kashiwamura, S., Nakajima, K., Koyama, K., Iwamatsu, A., Tsunasawa, S., Sakiyama, F., Matsui, H., Takahara, Y., Taniguchi, T. and Kishimoto, T. (1986) Nature 324, 73-76.
- [2] Snick, J.V. (1990) Annu. Rev. Immunol. 8, 253-278.
- [3] Hirano, T. and Kishimoto, T. (1990) in: Peptide Growth Factors and Their Receptors (N.B. Sporn and A.B. Roberts, eds) Handbook of Experimental Pharmacology, Vol. 95/1, pp. 633-665, Springer, Berlin, Germany.
- [4] Horii, Y., Muraguchi, A., Iwano, M., Matsuda, T., Hirayama, T., Yamada, H., Fujii, Y., Dohi, K., Ishikawa, H., Ohmoto, Y., Yoshizaki, K., Hirano, T. and Kishimoto, T. (1989) J. Immunol. 143, 3949-3955.
- [5] Ruef, C., Budde, K., Lacy, J., Northemann, W., Baumann, M., Sterzel, R.B. and Coleman, D.L. (1990) Kidney Int. 38, 249-257.
- [6] Pfeilschifter, J. (1989) Eur. J. Clin. Invest. 19, 347-361.
- [7] Berridge, M.J. and Irvine, R.F. (1984) Nature 312, 315-320.
- [8] Tonouchi, N., Oouchi, N., Kashima, N., Kawai, M., Nagase, K., Okano, A., Matsui, H., Yamada, K., Hirano, T. and Kishimoto, T. (1988) J. Biochem. 104, 30-34.
- [9] Fukunaga, M., Ochi, S., Takama, T., Yokoyama, K., Fujiwara, Y., Orita, Y. and Kamada, T., Am. J. Hypertens., in press.
- [10] Grykiewicz, G., Poenie, M. and Tsien, R.Y. (1985) J. Biol. Chem. 260, 3440-3450.
- [11] Yamasaki, K., Taga, T., Hirata, Y., Yawata, H., Kawanishi, Y., Seed, B., Taniguchi, T., Hirano, T. and Kishimoto, T. (1988) Science 241, 825-828.
- [12] Hibi, M., Murakami, M., Saito, M., Hirano, T., Taga, T. and Kishimoto, T. (1990) Cell 63, 1149-1157.